University of Cincinnati researchers produce fat-busting proteins in the laboratory.
Researchers Mark Castleberry, a doctoral student, and professor Sean Davidson, both in the UC College of Medicine, have found a way to produce in the laboratory a human protein produced in the liver known as Apolipoprotein A5 (APOA 5). It plays an important role in metabolizing and clearing excess levels of triglycerides from the bloodstream. Their findings are available in the American Society for Biochemistry and Molecular Biology’s Journal of Lipid Research online. Castleberry, who is studying in the UC Department of Molecular Genetics, Biochemistry and Microbiology, is the paper’s first author. He is shown in the photo above with Davidson. “APOA5 is highly involved in how fast triglycerides get taken out of your circulation,” says Davidson, who has a doctorate in biochemistry. “The more APOA5 you have the faster the triglyceride is removed. Everybody agrees it is an important protein but scientists don’t know much about its structure or how it does what it does. If we could figure out how it works we could come up with a drug that uses the same mechanism or trigger it to work better.” The work demonstrates UC’s commitment to research as described in its strategic direction called Next Lives Here. Castleberry says researchers inserted a human gene coded by DNA into bacteria genetically engineered to produce human proteins. Once those proteins were produced they were removed from the host and purified for use in studies at the lab bench and in mouse models. “We can quickly make a much greater amount of this protein using bacterial production than if we tried to isolate it from blood in humans,” explains Castleberry. “The mice in this study were basically fed a large bowl of fat and triglycerides.” Other co-authors of this study were Xenia Davis; Thomas Thompson, a professor in UC’s Department of Molecular Genetics, Biochemistry and Microbiology, and Patrick Tso and Min Liu, both professors in UC’s Department of Pathology and Laboratory Medicine. Reference: “Functional recombinant apolipoprotein A5 that is stable at high concentrations at physiological pH” by Mark Castleberry, Xenia Davis, Min Liu, Thomas B. Thompson, Patrick Tso and W. Sean Davidson, 12 December 2019, Journal of Lipid Research.DOI: 10.1194/jlr.D119000103PDF The research was supported by a National Institutes of Health’s Heart, Lung and Blood Institute which funded a predoctoral fellowship for Castleberry.